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ABSTRACT 

A method to infer sediment concentrations from acoustic backscatter levels has been 

implernenled for a prototype acoustic sodimc:nt flux probe. This required calibruions oftbe 

acoustic tnmsceiver systems and direct rDeaSlnmCRts of the system response to typical 

sediment size distributions over a wide range of COncentratiODS. 

The sensitivities of the 1.3 MHz and S.2 MHz transducers of an acoustic sediment probe 

were measured using the backscatter amplitudes from stainless steel wires of four different 

radii. A two-frcqucncy inversion algorithm estimating the geometric mean radius and 

variance about the mean of suspended !ICdimcut with an assumed Iogoormal size distribution 

and the sediment mass concentration was developed and tested in a laboratory setting. 

lbescnsitivity ofthc S.2 MHz tmJsducer for each wire was consistent within 10%. The 

sensitivity of the 1.3 MHz transducer calculated for each wire was not consistent and is 

believed to be due to a strong angular dependence between the wire orientation and the 1.3 

MHz. transducer W:c. The sensitivities of each of the four transducers were, however, 

inferTed from the system' s response to the controlled sediment backscatter measurements. 
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1. INTRODUCTION 

DUDLEY KNOX LIBRARY 
NAVN.. POSTGRADUATE SCHOOl 
MONTEREY CA 93943·5101 

The coastAl region of the United States is of high economic, recreational. and strategic 

value. Poria and harbors arc important for the import of foreign goods and the eXpOrt of 

agricultural and industrial products. The COll!ltal region ill subject to many natural. forces, 

often resulting in d.isastrOWI consequences. Although storms have important effects on 

coastal property, the continual exposure of the nearshore: zone to waVCI and currents can 

have cwnulativc cffcct!l which can be significant over a long period of time. Depending on 

the wave dynamica and nearshore topography, alongshore littoral drift can CAU8C erosion. 

transport, and deposition of vast amoWlts of sediment. The potential for extensive danugc 

to shoreline homes, rea.l cstate, and haJbor IJtructurell emt in both the short and long term. 

Predic tion of sediment transport rates require that the amount of suspended sediment flux 

be known \U1dcr a variety of wave conditions. As deep water ocean waves and locally 

gmcratcd wind WAVCI! propagate toward the coast, their energy iJ transfonned to higher and 

Iowa" fitlquc:ncicB in nonlinear inlcractiOnll under the influence of the Wlderlying lopOgraphy. 

1k: nmIinear ftuid motions cause transport of the sediment at the seabed, potentially leading 

10 significant changes in the 10Cll topOgraphy. Much of the incident wave energy is 

d issipated by 8mall-sc.aJ.c tuJbulcnt motiOll! which strongly couple larger-scalc fluid motion 

through the water column to the sediment bed. Small-scale turbulent kinetic energy is 

produced at both Ute swfacc by non~linear wave intcraclioru! and wave breaking, and althe 

boUom boundary due 10 ahear stn:as. While the bottom botmdary layer is typically only a 



fi:w centimeters thick under the oscillatory flows fOlmd in the nearshore region, under more 

energetic wave breaking conditions the turbulent boundary layer can occupy the entire water 

column. Consequently the lIIrong. episodic, multi-scaled forcing in the nearshore region 

presents unique problems in our undcrstmding sediment traMpOrt processes. 

Models and measurement of sediment transport in the nearshore must take into account 

not only the strong irrotational wave motion above the sediment bed, but also the much 

weaker turbulent motions generated by the fluid flow. Ikvelopment and verification of 

models with in-situ data requires high spatial IItd temporal sampling throughout the water 

column. Idcal1y, sediment fluxes should be measured to the smallest turbulent scales 

throughout the water column to investigate the episodic, non-linear physical prOCC811C8 which 

produce net sediment fluxes in the nearshore. 

M ethods of sediment concentration and size distribution measmements range from the 

physical collection of a volwne of suspended sediment and the medium of suspension, to 

non-invasive methods based on the scatter of incident acoustic or light energy by suspended 

scattererB. Siphoning of a sample URing suction involves the removal of a volume of 

sediment and medium from the flow without crroncoU&iy sampling the sediment bed. This 

method ia restricted by its acnsitivity to background current&, particle size, air entrainment, 

and the direction of suction in relation to the direction of flow (Bosman ct al, 1987). 

Samples arc typically siphoned in a direction normal to the flow with a suction velocity 

which cxcocds the ambient flow velocity by more than three times (Bosman et al, 1987), but 

samples can also be taken along the axis of the flow with a suction velocity which excced8 

the maximum sett1ing velocity of the particles Wlder investigation (Hay, 1991). While these 



methodt ptMdc a direct sampling of the concentration, they clearly perturb the flow and arc 

limited in their volume resolution, and e1ttrCmcly limited in temporal resolution. 

TranmtiMometcn detennine the extinction characteristics of the medium by measuring 

the a ltenuation of light along a ahort light path through the medium. They provide a well 

controlled sample volume but have limited dynamic range. Empirical models arc required 

to rel4te the beam attenuation to suspended mass. 

Optical backscatter inltrumcnts measure turbidity .and suspended particle concentrations 

by detecting scattered infrared radiation. The respon8C of an optical bacbc.\tter IICIllK)f" 

depends on the size, compotition, and shape of mspendcd particles. This requires 

calibration with lIU8J)CIlSions from the waters to be inVC8tigatcd (D & A Instrument 

Company, 1991). OBS instnunents arc well suited to the measurement of !wpcnded 

concentrations with their wide dynamic range, linear fClpon&C to increasing concentrations, 

and insensitivity to bubbles and organic matter. Their primary limitation for srnalI-scale 

studies is that the sample volwne dcpcnda on the concentration of the I!UIpCndcd sediments 

being mtll!lun:d. Thill leads to a poorly defined sample volume, md !IO arc more suited to 

the mcamrcmcnt of bulk sediment concentrations. 

The Ule of acoustic backscatter instruments ill • promising area of researcb. Small and 

robustly engineered acoustic backscatter inIItrumcnts are wen suitod to 8Cdimcnt flux 

mcasurmtmts. Unlike siphon sampling. the acoustic instrument can be deployed wen above 

1hc boundary IIycr (1yJicalIy I meter), directed downward to mcaAute the turbulent boundary 

layer properties with non-intrusive acoustic beama. Current implementAtioM of this 

technology have high sp.atiaI (0(1 cm)] and temporalrcsolution (O(O.l s)] providing a 



mcIhod for sampling thc small-scale concentration levels in thc boundary layer (Hay, 1983). 

Sampling thc sedimcnt along the length of the acoustic beam in range bins is accomplished 

by rapidly sampling reccived acoustic energy levels from short dw-ation transmitted acoustic 

pulscs. Inversion techniques arc used to convert thc acoustic backscatter levels to particle 

conccntration and size distribution paramcters. This allows measurements of sediment 

concc:ntration properties spanning the depth of the boundary layer. The invcnIion technique 

developed in this study is bucd on previous work (Hay and Sheng, 1992) utilizing multiplc 

acoustic frequencies. 

Thc acoustic backscatter instrument utilized in this study is thc Coherent Acoustic 

Sediment Probe (CASP) developed under thc direction of T. P. Stanton at the Department 

of Oceanography, Naval. Postgraduate School. Thc CASP is a two-frequency, dual mode 

underwata instrument package originally designed for the study of surface boundary layer 

turbulence. It U8eII three 5.292 :MHz transducers and a single 1.323 WIz transducer to 

determine three components of velocity, suspended sediment concentration profiles. and 

sediment size distribution using a multi-frequency approach described in the following 

chapter. By combining the three velocity components measured by the CASP and the 

sediment concentration estimated from an inversKm of thc volwnc backscattered strengths, 

three components of the sediment flux: can be determined down to centimcter scales. 

In this study, the absolutc scnsitMty of thc CASP acoustic backscatter systctn was 

detcrmined using a fixed wire bacbcattcr calibration technique following the theOf"Ctical 

devclopment by Sheng and Hay (1993). A verification of thc two frequency inversion 

algorithm was made with the CASP using controlled conccntratiOll8 of sediments collected 



from local beaches. Acoustic bacbcatter data were coDectcd for ~ub-octa1t'C concentrations 

up to 2.1 alliter usina sorted scctiment samples of known lognomW size di9tributioru. A 

homogeneous ICdiment suspenaion of prc--dctennined mass concentrations was ac~d 

using a uniquely designed test VCSIICI. The test VC8sel prm.';ded a wen mixed test volwne 

with an acoUlltically transparent window and no interior level surfaces which could allow 

sediment to settle out during the trialIJ. The dc:$jgn also avoided the generation of turbulent 

vortices and bubble entrainment from the air·watcr boundary. 

The background theory used to determine the seruritivity of the CASP acOWltiC 

transmitter/receiver and the sediment inversion technique are presented in Chapter D. The 

ex.perimental methoda used to determine the CASP sensitivity and teat the inversion 

technique arc described in Chapter m. Results are discuued in Clupter rv, and are 

followed by conclusiOfllJ and recommendations in Chapter V. 



D. BACKGROUND THEORY 

A, COHERENT ACOUSTIC SEDIMENT PROBE (CASP) 

The CASP measures high temporal and spatial resolution acoustic bacbcatter information 

todctmnine the suspended mass, M., and velocity, V, which are used to calculate the total 

sediment flux vector, F", M· V(XJ',1,i). A theoretical inversion technique is required to 

convert the backscatter acoustic pressure measwmtcnts from the eASP into sedJment size 

distributions and mass concentrations, The amplitude ofbackscattcred acoustic energy at 

a givcn frequency depends on the number of scatterers, their size, and their acoustic 

impedance in the samplc volumc. For simplc particle size distributions, the size versus 

frequency dependence of the scattering cross sections can be used to estimate both the 

scattcrer size aDd mass concentration by taking t.ckscatter measurements at multiplc 

frequencies , The multi~frequency approach requires knowledge only of the overall 

sensitivities of the acoustic instruments and of the frequency/size depeDdence of the 

scattering cross section oftbc particles. 

An underwater acoustic backscatter instrumern requires a 1nInsduccr to convert transmitter 

electrical energy into lICOUStic energy, and to convert ~vcd acoustic energy into electrical 

energy. In the CASP. a transducer of known dimensions is electrically excited to produce 

a short, bigh frequency acoustic pulse wbicb propagates through the water. B.cbcattcted 

energy may be re<::eivod at the samc transducer ( monostatic mode), or at a transducer 



sepuItt.d in SJEC from the transmitter (bistatic mode). This theoretical treatment focuses 

OD the mooostatic mode-the bistatic mode is an extension wing a different form. factor. 

Comider a pubed, narrow-beam transducer shown in Figure 2.1. The detected volwne 

is in the far field, defined by r > 1t Q} I A (Clay aod Medwin. 1977), wbcre r is the distance 

from the tnmsducer to the detected volume, a"is the transducer radius, ~ is the attenuation 

coefficient in water, ~ is the attenuation doe to the suspended particles, and A is the 

acoustic wavelength. The sample volume of eech acoustic beam is defined across-beam by 

the·3 dB beam width, 2 Po , and ndial.ly by the width ofthc transmitted pulse length, c 1:12, 

where c is the sound speed in water, and 1: is the duration of the transmitted pulse. Tbe 

dctocted volume is the volumetric intersection of the cylindrical sample volumes of the 

transmitter and receiver acoustic beams. The transducer detects backscanercd acoustic 

pressure. ps • returned from particles in the transmitted beam path. The particles are assumed 

to be raodomly and homogeneously distributed across the detected volume and the 

COnccntrat10D is wumed to be low eoough that multiple scattering can be igoored. This 

8.SlIumption is valid when the mass concentration is less than 30 gIL for quartz particles 

(Varadan et ai, 1983). The maximum mass concentration in the series ofca1ibnation runs 

cooducted for this study was 2.08 gil (32 8115.4 liter), although field measuremeIllS could 

well reach strong scattering values. 
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Figure 2.1 Geometry of a pulsed monostatic acoustic system and generali:z.ed directivity 
pattern showing the main and side lobes of the acoustic beam T represents the transducer. 
The remaining symbols are defined in the text 



B. TRANSDUCt:R DIRECJlVITY 

The farlield directivity, D. for a circular piston I:r'an'iducer of radius Do is given by 

(2.1) 

(Clay and Medwin 1917) where 11 is the cylindrical Bessel fimct.ion of order I, and 

Ie ( ,,2'1':"), the compression wave number. Table 1 contains characteristics of the 

CASP transducers for a sound speed c '"' 1480 mls and a pulse duration t .. 2.26 x 1O·~ sec. 

The tbeoretica1 directivity patterns fOT the 1.323 MHz and 5.292 MHz acoustic beams ate 

shown in Figure 2.2. in terms of the spreading angle p. 

TABLE I CASP MONOSTATIC ACOUSTIC BEAM CHARACTERISTICS 

F"". Tnmsdu,", Wave- Farf'icld Half Po_ Halfpower """" Radi", 1eng1h RAnge Beamwidtb Beamwidth Len81h 
(MHz) (em) (em) (deg) (em) (em) 

(om) 

1.323 1.27 0.112 45.2 2.62 1.14 1.68 

5.292 0.317 0.028 11.3 2.62 1.14 1.68 

C. BACKSCA TrEK RESPONSE TO LOGNORMAL SIZE DISTRIBIrnON 

The pressure amplitude of incident spherical sound waves in the detected volume can be 

expressed as (Hay and Sheng, 1992) 



Figure 2.2 CASP 1.323 MHz and ~.292 MHz transducer directivity peltems with angles of 
the first null point and the half power bandwidth for each frequency shown 

10 



(2.2) 

where p~ is the on axis presswe amplitude at r *. the reference distance; r is the distance 

from the II8Dsduccr to the detected volurn: with ,.< < ,.., 110 is the attenuation coefficient in 

clean water, m; is the attenuation due to the suspeDdod particles. The ovcrbar denotes the 

average over the size disbibution. 0 is the transducer directivity 

RcpresenIing the particles as solid sphere5 of equivalent size and letting V be the output 

voltage oftbc receiver, it can be shown that (Hay 1991) 

(2.4 ) 

II 



and 

j 0 2 [("'(-,,) 12 "(0)00 

F[,,(a),f.,,(T)l~kcll~I'·-_----1 

[0 '''(0) da 

(2.5) 

where S is the overall system sensitivity constant, liT is the JBdiaI spreading term, a is the 

equivalent radius oftbe particle, n(a) is the size spectral density, M is the mass concentration 

of scattcrers, and ~ is the grain density of the particle. < is the comblncd attenuation of 

acoustic energy due to the: attenuation effects of the medium and the scatterers in the acoustic 

beam. F [ lI(a). i",JX)] is the response function due to the size distribution and far-field 

backscatter form factor, f.Jx) ,of the particle. Here, x is given by x = k.,a, where ~ is the 

compression wave number. The term [ sinh( ' )/ < liD. corrects for attenuation across the 

detected volume (Hay and Sheng 1992). 

Most sediment distributions in the nearshore can be represented by a logoonnaJ 

distribution of tile fonn 

I [ (Ina- loa it 
n(o)OO ~ --"'P - - --' -r(lna) 

,ffiln 0, 2{ln 0 .. ) 2 
(2.6) 

which is characterized by the parameters ~,the geomctricmc:an radius of the particles, and 

(Ino,)2, the variance of rna about its mean. ForcxampJc. Figure 2.3 shows a best fit 

12 
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Figure 2.3 Best fit comparison between the grain size distribution for Monterey Wharf and 
• lognonna' distribution with 't " 82 microns and ag = 1.26. 
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comparison between 1bc size spectral density for 90diment collected at Monterey WJwf and 

a lognormal distribution with a mean geometric radius of 82 microns and Og = 1.22. The 

symbols (.) repre!ICIlt the number of gmins in each sieve size rBIlge assuming each sediment 

grain bas a diameter equal to the mean size of eacb sieve range. The distributions for 

Asilomar State Beach and Naval Postgraduate Scbool Beach ace similar with values of Og 

... 1.22. ag = 135 microns and 0g - 1.22. i: .... 94 microns respectively. This single mode, 

lognormal distribution is a widely obsetved sediment size distribution. However, mu1ti

modal distributions can occur. requiring a more elaborate parameterization using a lArger 

nwnber of frequencies and a different form fiK:tor 1bm the hW frequency apJXOIICb described 

here. The form factor for uniformly-5izcd plflicles, IS!llDIling the particles have a lognormai 

size distribution. is plotted in Figwe 2.4 as dctennined empirically by Hay (1991) and is 

ex...".,. 

(2.7) 

where Ifoo(x)~_1 is the tbcorcticaI fonn factor for a rigid, mobile,spbericaJ particle with 

the density of quartz (Hay and Mercer, 1985) and x = .to, , where 'l is the mean geometric 

nsdius oftbe particles. The dependence of the form factor on the frequency of the acoustic 

energy and the size of the particles allows the use of two different frequencies to estimate 

the size of the perticies. Tbe theoretical values of the response function, 

fln(a), if ... (x) I ], for natural. sand particles can be computed assuming 8 lognormal particle 

14 



1.4 

1.2 

~ 0.8 

-0.6 

0.4 

0 .2 

o o 0.5 

_.------- -

/~~ 

1.5 2 2.5 3.5 
X = ka 

Figure 2.4 Empirically detennined fonn factor ror uniformly-sized, spherical particles 
assuming a lognonnal particle size distribution. 
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size distribution and the form factor for a lognormal size distribution.. IfJ.~) I. Figure 2.5 

shows the form of the ~ function, given by Equation (2.8) below, for each frequency 

and values of 0". ranging from 1.1 to U. 

After substituting the logoonna.l distribution into Equation (2.5), Fr 1(a), lf",,(~)ll is now 

dependent only on llg. oK' and Ice. By Jetting X~Y-r 

f a 2 1L(:I")I2 exp[- (lna- Ina. YI2 (In 0, Y ]dln a 

l{x, 0g),.f"[II(a), [(",,(:1")0 = (Ill 0 (2 .8) 

[aJ exp[- (Ina Ina.)212 ( In 0. Y jdlna 

Assuming the scattering attenuation is small, or has been completely corrected for, the 

backscatter for the two frequencies can be expYeSSed by 

(29) 

where the subs<:ript i represents the l.J and 5.2 MHz frequencies. The ratio of the 

relationship in Equation (2.9) for each frequency can be expressed as (Hay and Sheng 1992) 

(2.>0) 

which eliminates the dependence on M. the mass concentration. The right-band side can be 

evaluated from measumnents of the sensitivity S, and the digital output. X.' from a 

16 
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Figure 2.5 Response functions for 1.323 MHz Dnd 5.292 MHl, assuming EI lognollTlal 
particle size distribution. as a function of the particle mean geometric radius for V8ll1e~ of 
0. - 1.1 , 1.2, U, lA, 1..5. 
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lognormal sediment sample. The left-hand side of the equation can be evaluated using 

Equation (2.7) usin8 the eq:ression for I.e. ~) I . Figure 2.6 shows the theoretical fonn of the 

ratio F(X,. o.)IF(X1.0 .). Using only two frequencies. it is not possible to detennine both 

a, and 01' so the value of the lognormal distribution variance peiameter 0, must be 

prescribed. Theoretically the value of ° ,can be determined in method'! using more than two 

frequencies, but the inherent statistical noise of the backscatter measurements is large 

enough to make the 0, estimates vary widely. so 0. must be prescribed (Hay and Sheng. 

1992). Based on the values of o,detmnined for the sc:di.mentsamples collected at the three 

locations mentioned above, a value of o. '" 1.2 is WICd in this study. In field studies., the 

value of 0. will be estimated from a lognormal distribution analysis ofa sediment sample 

from each location of interest. 

To estimate the mean geometric particle lBdius of the sediment, the measured ratios 

calculated from the right-hand side of Equation (2.10) are compared with the theoretical 

ratios of F(X" o, )IF(X1,o, ). In practicc.the estimate of a, is obtaincd from a m.atchto 

the value of the R, x,. o. ) IF(XI • 0.> function which is stored in a look.up table in the 

analysis software. 

1be mass concentration in the same range bin can be estimated by explicitly solving 

Equation (2.9) for M. 

(2.11) 

18 



0.5 "---;0"'.4:--::'"0.6=---:00'::.8- -:-' --C1.-:C2 ----:1"'.4:--c-'1.6O:---:,'::.8------'. 
Mean Geometric Radius (m) x 10.4 

Figure 2.6 Theoretical values of F(X,. 0.)1 F(X, , 0.)15 a function of ~ for oJ '" 1.1. 1.2, 
1.3. 1.4,1.5. 
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where P" is the density of the scattcrers, Xc is the digital backscatter counts for each 

frequency, S is the sensitivity for each frequency, and F(X, 0,) is calculated from Equation 

(2.10). 

lbis method therefore provides a techniquc for estimating mass cOncentration and the 

mean ~c particle radius from the dual f'rcquency backscatter levels and the assumed 

1ogoormaI9Cdiment distnbution standard deviation pIIJ'8ITlCter 0 • . A method for determining 

the system sensitivity, S, for each frequency of the CASP is discussed next. 

D. SYSTEM SENSmvrry 

Following the theoretical development of Sheng and Hay (1993), the estimate of the 

scositivity for a frequcncy using wires, S ... can be expressed as 

(2.12) 

where r is the perpendicular distance from the transducer to the wire, I I r is the radial 

spreading tenn, Xc are the digital counts of the backscatter amplitudes, and k is the 

compression wave number. The index. of summation, i, is dctennined by the number of 

different sizr.d standard targets used. Four stainless steel wires of different diameters were 

used in this study. 
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For a pulsed wave acoustic source, the function rp descnbcs the dependence of the 

backscatter amplitude on the effective length of the wire and is expressed by (Sheng and 

Hay, 1993) 

(2.13) 

where PI and II, are functions of Ii . the distance to the leading edge of the acoustic wave 

from, and '0 is the perpendicular distance from the tramducer to the fixed wire, 

A schematic of tile coordinate system for the pulsed system is shown in Figure 2.7. Figure 

2.8 shows r, asa fooction oftbe panuneter ~'o1, the ratio of thc T1Idius of the main lobe of 

the transducer directivi ty pattern, 'otan P .. ' to the radius of tile tint Fresnel zone 

(2.14) 

where. depends on the acoustic fu:qucncy and bcamwidth. The values of .<'01 and r, 

for the 1.3 MHz and S.2 MHz tn.nsducers in this study are 0.98, O.S; and 2.2. 0.7 

respectively. 
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Fi~ 2.1 Schematic of the coordinate system used for an acouslic pulse incident on 8 fiXl'd 
mre of inf"mitc length. T represents the transducer. The other symbols are explained in the 
text. 
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Figure 2.8 r; all a function of 't(r.,) for a monostatic pulsed acoustic system 
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The form factor for an infinite cylinder, I .. (x), can be expressed by (Sheng and Hay, 

1993) 

(2.15) 

where the Neumann factor 4l. '" 1 for n = 0 and En ~ 2 for n 1 I ,and T\, is the phase shift 

ofthc nth partial wave (Farm, 1951). Figure 2.9 shows the dependence of tile form factor 

on the acoustic frequency and the radius of the wire. Table 2 lists the values of Au,. and I ... (l } 

for this study. 

TABlE 2 VALUES OF Au. AND I ... (l) FOR EACH FREQUENCY AND WIRE RADIUS 

Wire 1.323 MHz 5.292 MHz 
Radius 

(microns) .... (m·') /J<) kG (m· l ) /.lA 

25 0.14 0.12 0.56 0.74 

40 0.22 0.22 0.90 0.92 

50 0.28 0.32 0.12 0.81 

64 0.36 0.44 1.44 0.72 

The relationship of I .. (x) to ka for 1.3 MHz is generally linear while the relationship for 

5.2 MHz shows the values of I .. (x) Ux:rease for the first two values of ka then decrease for 

the remaining two value. This frcqucncyltarget size dependency of f .. (x) allows the ~ of 

a multi-frequency approach to discriminate between different sized targets 
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Figure 2.9 Fonn factor for an infinite cylinder. The values for the 1.3 MHz and 5.2 MHz 
and wire size combinations used in this study are shown 
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Ill. LABORATORY ACOUSTIC BAC'KSCA TO:R MEA~1JREMENTS 

The absolute backscatter setUlitivity for each frequency of the CASP was calculated using 

the procedure discussed in Section II D. The standard targets, four stainless steel wire8 of 

different diameter1l, were suspended in a 600 gallon tank while the primary sample volume 

of the CASP was moved through a grid of points centered on the wire. The CASP wa.~ 

paU8ed at each grid point and backscatter levels were measured to calculate the sensitivity 

for each frequency. The backscatter lewis were also used to compare the monostatic beam 

characteristics of the angular width of the first null point, half power bandwidth, and pulse 

length to theoretical values. 

The inversion technique discussed in the previous chapter was verified by developing a 

method to measure the backscatter levels of known sediment concentrations in a unique test 

~ Clean and sorted sediment samples of increasing cumulative weight were placed into 

a known volume of water in a test vessel. The sediment was suspended by continuous 

stirring. then ensonified by the CASP to mc:aaUfC the backscatter levels from the increasing 

concentrations. 

A. COHERENT ACOUSTIC SEDIMENT PROBE (CASE') 

The CASP is a robUfltly COtUltructed, multi·frequency, underwater instrument package 

originally designed to conduct studies of tw"bulence in the surt3.ce boundary layer. It has 

three: S.2 MHz acoustic transducen placed radially around a single 1.3 MHz transducer, a 
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two axis tilt sensor, and a three axis accelerometer to detect the inRtrument'g orientation and 

motion. Inlhe bistatic mode, one of tho three 5.2 MHz transducers emits a aeriea of 32 shan 

(0.5 em) pulses into the water colWlUl, while the other two transducers receive the 

backscattcred acoustic energy from the sample volume defined by the inlencctioll of the 

transntittcr and rccciYer beams. After 32 backscattered puisca have boen sampled by both 

rcccMng transducers, the: tranlduc.cn are electronically switched so another 5.2 w-Iz 

transducer emits a pulle and the other two rcccivc. The mOR09tatJc sampling mode is 

interleaved into the bi8tatic sampling sequence to estimate the along-beam backscatter 

intensity for the three 5.2 .MHz transducen and the single 1.3 rvfHz transducer. In the 

mon08tatic mode, a triplet of longer (1.68 em) pulses are transmitted from each Iransducer 

in !llOQUC!1CC. As each puIsc i.8 transmitted, the transducer is switched to the receive mode and 

the backMcatter amplitudes are sampled in each l.68 em range bin oul to 1.2 meters. '1be 

complete sequence of three bislatic and three monostatic tnlruImit modes is cuntinuously 

repeated at a rate of 35 Hz (Stanton, 1993). 

'The 1.3 MHz Ira:mduccr jR mounted flush in the center of the CASP instrument head, and 

the 5.2 MHz ttansducers are mounted on 10 em arms arranged radially outward from the 

instrument head at 0", 120", and 2400 (where 0" denotes the top of the instrument head). 

F"1gIlR' 3.1 illU!tratcs the acoustic beam geomeby of both the bistatic and monostatic modefl. 

1be foW" acoustic beams intersect at a primary sample volwne 25.4 em downbeam from the 

1.3 I\.fHz transducer 
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Figure 3.1 Schematic of the CASi' acoustic beam geometry for the bi~t3tic and m()n~tnlic 
modeH. (Stallton 1993) 



B. ABSOLUTE BACKSCATfER SENSITIVITY 

l be ab&olute system response of the CASP to backscatter from cylindrical targets of known 

diImctcr wu calculated following the procedure discuaod in Section n D. l're'W>uI studies 

have been hued on spherical targets, particularly )w-glaM beads. SphCf'C!l have the: 

advantage that their target 8trmgth is independent of orientation, but it can be difficult to 

Iwpend a Ipherical target precisely in the center of the acoustic beam. particularly in the 

very IWTOW acouatic beams generated by transduccn operating at MHz frequencies. Wire 

lAfRCtB offer the advantage that the mounting structure is located completely oUtlide the 

acoustic beam path 10 backscatter from !he supporting structure is not preaent. 

S~ and Hay (1993) conducted a study comparing !!)'lItem sensitivity calculations U8ing 

Iead-gIass beads with those: calculated using stainless steel wires. There: was good agreement 

bctwa:n the two approaches when an appropriate correction factor was made, indicating that 

stainless steel wires can be used as standard targc:18 in system IICIlSitivity calculations. 

In this experiment, symcm !IetlSitivity was dcternrined wing stainless steel wires of four 

different radii: 25, 40, 50, and 64 microns. Table 3 Iists the: values ofx (= y.) for c = 1480 

mia for each wire and frequency combination. The values ofk, fur the 1.3 MHz and 5.2 

MHztransducer!l were 5617 m ol and 22467 m"\ respectively, 
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TABU: 3 RADII ANU V AUJES OF x "'" ka (m·') FOR EACH FREQUENCY AND WI.R.E 

COMBINATION 

Radius (~ 1.323 MHz 5.292 MHz 

25 0.14 0.56 

40 0.22 0.90 

50 0.28 1.12 

64 0.36 1.44 

Each wire was suspended Wlder tension in the test tank. The wires were oriented paraDel 

to the transducer face which was being investigated (vertical for 1.3 Mllz., 23.5° from the 

vertical for 5.2 MHz). The CASP was moved under computer control in small increments 

in XN space by a digital servo controller which positioned a precision stage supporting the 

CASP. The servo controller is capable of incremental movements of the CASP staging as 

sm.all as 30 microns. 1be focal point of the acoustic beams traced a grid of points with the 

wire located approximately in the grid center. Bacbcattcr levels were measured by the 

CASP at each grid point for a specified period of time. Figure 3.2 shaM a plan view of the 

gird of points used in the absolute backscatter runs. The grid dimensions in these 

calibrations were 5 cm by 10 cm with an increment of 0.2 em The dwell time at each grid 

point was 10 seconds. 
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FlgUTC .1. 2 I'lan view of the 5 em by 10 em grid traced Oul hy the primary ~lImp'ing volum~ 
of Ihe CASP during the ab~olufe backscatter runs. The data collection mn heg3n with fhe 
primary sampling volume in the (0, 0) poIIition with Ihe an-ows indicating the motion of Ihe 
CASP. The 80lid arrOW8 indicate data cullection, while the dMhed arrows indicate 
repositioning of the CASP in mcremenlll of 0.2 em. 
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C. lABORATORY SEDIMENT BACKSCA ITER TESTS 

1. EIperimental Tank and Miring Vessel 

A 000 gallon acrylic tank was used to contain the CASP in fresh, fillered water during 

the calibration procedures. The tank was equipped with a computer-controlled XfY 

positioning stage under which the CASP was suspended. The relative size of the tank and 

the CASP (Figure 3 .3) allowed targets to be; positioned in the path of the acoustic beams as 

thc CASP stage wa., repositioned. An acrylic test vessel was constructed with a plastic fihn 

window to minimize attenuation across the vessel-water boundary. A controllable speed, 

vertically oriented propeller stirrer was positioned in a vertical acrylic cylinder serving as 

a directional noule which was secured to the tank frame to center it in the mixing vessel. 

The mixing vessel and propeller stirrer n07.zie were designed so that no level surfaces or 

flow stagnation points were present which could allow sediment to settle out of the mixing 

volume and reduce the test sample concentration. The mixing vessel, containing 15.4 liters 

of clean, deaerated water, was placed in the test tank with an OBS inserted in an 0 ring 

!IC4led sidewall opening with the tranJlduccr face positioned downward. The temperature of 

the tank and mixing vessel water were meAlluted to 0. 10 C accuracy. The tank and vessel 

tc:m:peraIUre8 differed by al most 10 C throughout the series of test runs. Any bubbles on the 

CASP or mixing vessel surfaces were brushed off, with particular care being taken atOW1d 

Ih.e transducer faces and mixing vessel window. The CASP was positioned such that the 

acoustic beam intersection point was approximately 1.0 em inside the mixer vessel window. 

The propeller stirrer noule was placed downward within one degree of vertical in the test 

vessel and secured to the tank frame. The calibration run for each grain size range was 
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Figure 3.3 Schematic of the h:st tank. CASP. and the mixing ves~e1 wilh propeUer slin'cr. 
(Stanton, 1993) 
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perfonned by adding sediment samples to the test \lCssel with the propeller stirrer running, 

resulting in a homogeneous mass concenlfation. An equal amount of clear water from the 

vessel was removed in the sample vial to maintain the truI8S concenlfation for that particular 

run Bacbcatterdala were coDccted for 120 seconds. The sorted samples were added to the 

vessel in sequence, with the final weight of sediment in the tellt vessel totaling 32 grams. 

Il1is gave a maximum mass concentration of2.08 gil 

2. Sediment Collection and PreparatJon 

Sediment samples were obtained from three locations along the Monterey Bay coast: 

.Asilomar Slate Beach, NIMII. POIItgraduate School Beach, and the Monterey Wharf. Samples 

from each location were cleaned, sorted, and Weighed to 0.01 gram accuracy. Sieves with 

mesh sizes of 0.090 mm, 0.125 mm, 0.180 nun, 0.250 mm, 0.355 mm, 1.00 nun, and 2.00 

nun were U!led in the sorting of the samples. Discrete samples of clean and sorted sediment 

were wQghed into viBl8 containing a weak solution of water and Triton 100. Sorted samples 

were welghed out such that sequential additions of the sediment samples into the test vessel 

rcsulIedin ~ sub-octave weights of 0.5, 1.0, l.5, 2.0, 4.0, 6.0, 8.0, 12.0, 16.0,24.0, 

and 32.0 grams. Triton 100 is a wetting agent that prevented the sediment grains from being 

encaMed in air bubbles which could significantly increase the backscatter cross scction 

resuJting in erronooua backscatter levels. 

Backscatter data were analyzed from the first range bin inside the mixing vessel 

window. Figures 3.4, 3.5, and 3.6 show the mean monostatic backscatter levels for each 

range bin over the duration of the sample run (120 sec). llte left and right panels show the 
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Figure 3.4 Mean monO!ltalic log back..,catter power level profile for ~cdimcnl ofsil_e 1):5 In 
180 micron~ . Tbe lop panel shows mean back~catter levels for no ~edimenl and no sti rring 
of Ihc mixer vcSllel waler volume. The bottom panel shows mean hackscaner levt:1s for no 
!lcdimenl with stirring of the mixer vessel water volume. The left panel i'lhow~ the 
backscatter level profile for 1.3 MHz. Thc right panel shows thc bacbcatter level rrofile 
for S.2 MHz. 
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Figure 3.~ Same as Figure 3.4 but for O.~ g and 8.0 g ohedimcl1! in sllspcmion . 

,. 



Figure 3.6 Same III Figure 3.4 bUI for 16,0 g and 32.0 g or ~etljmenl in su~pcn~io1\ . 
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backscatter levels fOf the 1.3 MHz and 5.2 MHz acoustic beams respectively for the grain 

size diameter range of 125 to 180 microns. 1be cumuJativc sample weight of sediment 

shown are 0 gram> with no mixing of the water volume, and 0, 0.5, 8.0, 16.0 and 32.0 grams 

with mixing of the water colwtm. For both the 1.3 and 5.2 Wlz frequencies, the 0 gram. no 

mixing case exhibits backscatter levels which can be attributed to micro-lW"bulcnt vortices 

and small contaminants present in the test tank and mixer water volumes which represent a 

noise floor for this calibration method. For the mixing cases the 5.2 Mllz profiles show a 

large i:ncreasc in backscatter power (by a factor of 10' for 32 grams) in the mean backscatter 

powerrdums inside the mixer window (starting at 26 cm range) at each concentration. The 

mean backscatter returns for the 1.3 MHz beam also increase iII1Iide the mixer window (by 

• factor of nearly lit for 32 grams) for the higher concentrations but continue to increase 

for the lower concentratioru, to reach a maximwn at a range of about 32 cm. "(be 

backscatter drops ofl" shaJply at about 34 em where the backscatter profile resembles more 

c108e1y that of the 5.2 MHz acoustic beam. The higher values ofbackseatter levels for the 

low concentration profiles for 1.3 MHz ncar the 20-25 em range are believed to be due to 

the plastic film window. Backscatter values are sampled in the range bins through the 

suspended sediment volume. 

Appendix A contains the sieve analysis for each of the nine samples using the meolllured 

weights for ellch sieve size range. The analyses show the size distributions were 

significm1Iy different for each of the three locations. The mean percentages of sediment size 

ranges for the three collection sites shown in Table 4 indicate NPS Beach Lab sediment 

consists mainly of medium and fmc sized si1ts with most sediment between 0.063 and 
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0.:5 mm. Monterey Wharf sediment HI simi.l.ar to the sediment collected at Asilomar but has 

a more even proportion oflarger mcd grains in the 0.5 to 1.0 mm range. 

TABLE 4 PERCENT AGE WEIGHT BY SEDIMENT CLASSIFICA nON 

Classification Sizc Rmge(mm) Asilomar Beach Lab M. Wlwf 

""'., > 1.0 17.02 0.00 19.35 

Coarse Sand 0. :500-1.0 2:5.81 1.26 15.04 

Med.lFine Silt 0.063 - 0.500 56.15 97.16 64.09 

CoaI1lC--Fine Silt < 0.063 1.02 1.58 1.52 
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TV. RESULTS ANi) DISCUSSION 

The objectives pursued in this study were lhe detennination of the gensitivity of each 

frequency of the CASP, and development and verification of a two-frequency algorithm 

inverting backscattered acoustic energy from a volume of suspended sediment to estimate 

trWIS concentration and a geometric mean radius of the suspended sediment. The inVCfllion 

assumes the sediment is described by II lognonnal size distribution with a prescribed 

variance ofthc dfitribution about the mean radius. The system sensitivity for each frequency 

Will determined from the backscatter levels of four stainless steel wires of known dlamelerB 

using the procedure outlined in Section m B. Directivity pattern characteristics obtailled 

from lVapmcal analysis of the backscatter levels from the four wires were compared to the 

theoretical values of the monostatic mode for each CASP frequency. 

A. WIRE TARGET SYSTEM SENSITIVITY ESTIMATION 

The ayBtcm sensitivity for the CASP was dctcnnined by ensonifying each wire separately, 

following the procedure discusacd in S~tioo ill B. Table 5liats the nIlS COWlts, the values 

of ka, the fonn factor, the IClliitivity for each wire; and the overall KMitivity calculated for 

the 1.3 J\IIHz transducer. Table 6 list<! the same infonnation for the 5.2 rvnIz tramduccr. 

From Table 5 and Table 6, the values ofka rangc!I from 0.14 to 0.36 for 1.3 MH z and 0.56 

to 1.44 for 5.2 MHz. The form factor has the range of values ofx from 0.14 to 0.36 and is 

generally linear, as is the piol of peak count values for 1.3.MHz. The fonn factor for the 
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TABLE 5 PARAMETERS FOR 1.323 MHZ SENSnlVITY CAlLULA nONS 

1.323l\rfHz 

Wire RAdius " 40 so 64 
(miCrortl) 

RMS COWlL1 1694..-92 6194±174 19929:::1066 30500±2770 

X,('oJ 0.14 0.22 0.28 0.36 

IL oj I 0.1 2 0.22 0.32 0.44 

Numerator (counts) 0.68 5.75 30.1 71.7 

Denominator (1 0.01) 0.16 .86 2.28 5.52 

S (lO' counts) 4.23±O.30 6.61±O.33 I3.2±0. 92 13.O±L43 

<N> 108.2 

<D> (lO~) ... 
S" (1 o'i counts) 9.28+5.28 

TABLE 6 PARAMETERS FOR 5.292 MHZ SENSTITVITY CALCULATIONS 

5.292MHz 

Win; Radius " 40 SO 64 
(microns) 

RMS Counta 10922±884 20557±3575 11108+1444 16395±1l86 

X,( 'o) 0.56 0.90 lJ2 1.44 

IL 0) I 0.74 0.92 0.81 0.72 

Num""'" 37.77 111.78 9L58 88.26 

Denominator (10"") 11.96 29.57 28.65 28.65 

S (106 counl:8 ) 3. 16±O.28 3.78±O.68 3.20±O.29 3.05±O.24 

<N> 329.4 

<D> ( 10-<1) 99.2 

S" (lo' counts) 3.30±0.70 
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range of value for 5.2 MHz increases to a rel.1tive maximum at a value of x at about 0.85, 

then decreases to a relative minimum at a value of x of about 1.4. 

The rms count values for each frequency and wire combination are plotted in Figure 4.1. 

Ihe sensitivity values of each wire and frequency combination are plotted in Figure 4.2. 

Theoretically, the scnsitMty for each wire and a single frequency should be the same since 

the form factor would nortrtalize the different n:sporue from wires of different radii The 

plot of the 5.2 MHz sensitivities for the four wires shows this is the case., with the 

sensitivities consistent to 21%. The semitivitics for the 1.3 MHz transducer however are 

widely spread, suggesting a problem with the measurement procedW'C. It is suspected that 

there is a strong dependence between the angle made between the wire and the transducer 

face and the backscatter response, despite attempts to keep the wires orthogonal to the 

tnmsducers. The wide range of values for the 1.3 MHz transducer prevented further Wie of 

the wire-dcrived sensitivity values. In future work, a spherical target calibration will be 

attempted, although it introduces a vertical dependence to the backscatter values. 

B. MULTI~FREQUENCY INVERSION ALGORITHM 

Thirteen mass concentrations for sediment coDectcd from Monterey Wharf were used to 

test the CASP response to a known sediment size distribution and controlled concentrations. 

FJ8lII'C8 4.3 shows the mean rnonostatic backscatter level profile for each range bin llVCfaged 

over the duration of the run for a mass concentration of 0.26 gil. The top panel shOWll the 

profilefOl"thc 1.3 MHz transducer while the bottom panel shows the profile for the 5.2 MHz 

transducer. Figure 4.4 shows the profile for a maI8 concentration of 2.1 gil. Rcgrcssi.on 
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Figure 4.1 RMS count'! for each wire and frequency comhination 
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Figure 4.2 Sensitivity values for each wire and frequency comhination 
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Figure 4.4 Same all Figure 4.3 but for a mass wncentralion 0["2. 1 gil 
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linc80fthe bacb::atta~ for bin 13, 14, and 15 for the 1,3 MHz and S.2 MHz transducer 

have been drawn in. The bacbcattcr level of range bin 12, the fint range bin imide the 

mixing ycucl, fits the regression line generally well for the S.2 MHz Innsducer while the 

bin 12 bacbcattcrlevcl for the 1.3 MHz tranlduccr ill seen to be well above the extrapolated 

value from the regrceaion line. 

As previously discuascd in Section III C 2, these Iargcr then expected backscatter levels 

may be attributed to scatter by the pwtic fibn window or multiple backscatter from the 

transducer beam side lobes coming into contact with the mixing vessel window supporting 

structure. To mi:nimizc: the influence of this multiple backscatter from the mixing VCSBel on 

the analysis of the data, the bin 12 backscatter J\WCJ for the 1.3 MHz t:ranIducer bin was 

c:mapolated from the regreuion for each run. The bin 12 bacbcadcr ~l for the 0 gram, 

mixing run was considered the bll8Clinc backscatter value and wu subtracted from the 

backscatter level for each rubsequcnt run. lbc bin 12 backscatter level!! for the S.2 MHz 

tnauKiucer did not require correction and were analyzed as lI'IeaIIured. 

Table 7 lUll! the cwnulative maM, clD1Iulativc mass conccnlration, the data archive file, 

and the mean digital countl of the bacbcaUcr amplitud~ for both frequencies. The 

backscatter levels for the 1.3 MHz transducer have been corn:ctcd as described above. 

47 



TABLE 7 BROAD SPECTRUM SUSPENDED SEDIMENT DATA 

Cum.Mass Cum. Conc. CASPTS 1.3 MHz 5.2 MHz 
(g) <WI) (counts) (counts) 

0 0 55 ~29±0 ~151±26 

0 0 56 0 0 

0.5 0.03 57 59±18 1704±204 

1.0 0.65 62 979±39 2409±265 

1.5 0.10 66 1307±54 2991±239 

2.0 0.13 67 1613±58 3534±318 

3.0 0.19 68 2066±99 4293±343 

4.0 0.26 69 2604±120 5034±403 

6.0 0.39 58 3270±177 6279±565 

8.0 0.52 59 3%8±238 7329±660 

12.0 0.78 60 5109±511 9139±731 

16.0 1.0 61 9753±858 10294±926 

24.0 1.6 63 7522:1:617 13000±1170 

32.0 2.1 64 8737±664 14712:1:1030 

Figure 4.5 shows the plot of the dcpcm.dcnce of the backscatter lewis of the suspended 

sediment from Monterey Wharf to the cumulative concentration. From Equation (2.9), the 

beckscatter levels are proportional to the square rool of the mass concentration. One would 

expect a linear relationship to arise from the square of the bacluJcatter levels All a function 

of the mase concentration. Figure 4.6 shows the plot of the square of the bacluJcatler 1~1s 

for each cumulative concentration. Ignoring the obvioW! ouUier of the 1.3 MHz backscatter 
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Figure 4.5 Plot of the back!carter levels as a function ofma~~ c()ncentrlltioll 
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The tinearnature of the form vcrifie8 the aquate root proportionali!y between backscatter and 
mass concentration. 



for !he 1.0 gil tnII88 concentration, believed to be caused by a system malfunction, Figure 4.6 

doc! indeed vmfy 1hi5 linear relanonahip within the standard dcviatioOlJ of the bacbcaucr 

counu for each JtWlI concentration. This Mtisfying result cmphasize3 the reliability of the 

equipment and procedures U8Cd in ttus part otthc study. 

The slope of the regression lines discuuc:d above represents the decrease in backscatter 

ieYcI. wiIb distance. or attenuation, for each sample concentration. In this case, it specifically 

reprc3CI1.tI the attenuation over the length of one range bin (1.68 em) for the CASP. Table 

8 (ish the attenuation for each cumulative concentration and frequency. Figw'c 4.7 plots 

attmWllion versus concentration valuC/I which can be uaed in field mcasurementB to C1Jtimatc 

the attenuation along each beam in the pre8Ct1cc of sediment. Starting at range bin 1. the 

nws concentration can be estimated using Equation (2.11), then the local attenuation can 

be estimated from a lookup table of tile fonn of Table 8 (again, the attenuation for the 1.3 

MHz, 1 gI1 m.ua concentration should be ignored), The: bacbcatter level for the subsequent 

bins can therefore: ha~ the effects of attenuation removed. 
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TABLE 8 ATTENUATION FOR EACH CUMULATIVE CONCENTRATION 

Mua Conccntration 1.3 MHz 5.2 MHz 
(gil) (lltcountslm) (loJ coWltBIm) 

-4.38 -.00324 

0.03 -2.97 -4.76 

0.65 -3.41 -6.71 

0.10 -4.06 -8.24 

0. 13 -4.62 -9.97 

0.19 -4.71 -12.1 

0. 26 -6.91 - 15.3 

0.39 -7.91 -19.7 

0. 52 -10.1 -25.8 

0.78 -13.8 -33.5 

1.0 -40.4 -40.41 

I." -20.5 -53.7 

2.1 -24.6 457.5 

As !he wiR: sensitivity calibrations have unresolved problems for the: 1.3 MHz transducer, 

the direct mearurcmcnts of bacbcancr versu.f a known sediment concentration ahown in 

Table 7 and Figure 4.5 can ~ u.scd to estimate the sensitivitiCfl ~ and S,. Following 

Equation (2.11» the sensitivity can he expressed as 

(4.1) 
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for each. concentration, j, as all these variables are known. For concentrations wen above 

the cahbraDon tank noise, and by rejecting the clear outlier for the 1.3 rvtHz transducer at the 

mass concentration of 1.0 gil, the !leIUlitivities in Table 9 are obtained. 

TABlE 9 SENSITIVITIES FOR EACH CASP TRANSDUCER CALCULATED FROM 
MONTEREY WHARF SEDIMENT PARAMETERS 

Cumulative Sensitivity (counts) 
Concentration 

( gil) 1.3 MHz 5.2 rvtHz A 5.2MHzB 5.2MHzC 

0.19 15208 16112 14720 16397 

0.26 15726 16268 14538 16318 

0.39 15423 16457 14440 16475 

0.52 15701 16571 15021 16430 

0.78 15948 16794 14809 16646 

1.0 24840 16347 14558 16312 

1.6 15956 16798 14940 16348 

2.1 15859 16438 14585 16301 

Mean.+SID I 5867±591 16421±237 14698±177 16475±218 

Figure 4.81lhOM the plot of the values of the sensitivities, calculatod UAing Equation (4.1) 

and 1hc: M:dirnmt paametcrs for Monterey Wharf, for the 1.3 MHz and each of the three 5.2 

.MHz transducers. The calibration tank noise: is seen in the apparent high sensitivity values 

for suspended. sediment concentratioru ICIIS than 0.19 gil. The sensitivity valucs for the 

concentrations equal or greater than 0.19 gil indicate a high cOIVIutcncy Ihroughout the 

rmgcofmlllll concentrationll for each tramducer. The measured sensitivity range of the 1.3 
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Figure 4.8 Sensitivitiell for each CASP transducer calculated rrom parameterR rot sediment 
eoUeered from Monterey Wharf. 
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MHz transducer vatic! 3.7%. while the sensitivities for the 5.2 MHz transducers vary only 

1.4%, 1.2%, and 1.3% respectively. 

Lastly, the mcasw"Cd sample volwne defined by the transducer length and beam width is 

compared with the theoretical values. Table to lists the mea8W"Cd values of ~,the angle 

of the first null point of the acoUlibc beam directi\lity pattern. The theoretical values 

calculated in Equation (2.1) were 3.1" for 1.323 MHz and 3.10 for 5.292 MHz. 

TABLE 10 I)m ANGLE OF TIlE FIRST NUll. POINT 

~ml (dcgreCf!) 

Frequency WireRadiUli (micr0n8) ~P ml} 

(MHz) 2' I 40 I '0 I 64 

1.323 2.04 I 2.66 I 2.66 I 2.66 2.51 

5.292 2.86 I 2.86 I 2.86 I 2.65 2.81 

FigurCll 4.9 to 4.24 show 3 D rcprc!ICntations of the directivity pattern for the 1.3 MHz 

and 5.2 MHz monostabc acoustic pul.sc for bin 12. The X and Y plane represents the grid 

the CASP was moved through. while bacbcattcr data were collected. The Z axis rqm:scntll 

the countll and the log of the squan: of the counts (as generated by the CASP processing 

program) as labeled. Also !!hown arc end and side \liews of the acoustic pubc in log space. 

Table 11 listll the graphically measured valUCfl of the half-power b.utdwidth. The 

theoretical value for both 1.3 and 5.2 MHz was 2.6°. 
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Figure 4.9 3 D represenlation oflhe monostatic acouslic pulse for 1.3 MI17 and ~'ire 01 
radius 25 micron. in log and linear .!Ipace. 

" 



2000 

1500 

~ 1000 
o 

200 0 

150 0 

0 

50 0 

0 

1.3 MHz Wire Radius: 25 microns 

6 4 
Y Grid (em) 

~ j 
3 2 
X Grid (em) 

End View 

Side View 

~ 
~ 

Figure 4.10 End and side views of the monostatic acoustic plll.~e for 1.3 MIll. and wirc of 
radil.l8 25 microns. 
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Figure 4.11 3D representation of the monostatic acoUfJlic rul~ for 1.3 ~flIl lind wire of 
radilL' 40 microns in log and linear space. 
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Figure 4.12 End and side views or the monostatic acouslic pul..e ror 1.3 MJfz and wire of 
radius 40 micron~. 
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Figure 4. 13 3 D representation of the monoslalic acoustic pul~ fUT I .. ~ MII7. and wire 01 
TlIdi u.~ 50 micron.~ in log and linear space 
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Figure 4.14. End and side views of Ihe monosllllic acouslic pulse ror 1.3 Mill. lind wife or 
radius SO microns. 
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Figure 4.15 3 D repre~enlation of the monmltatic aCo\l~tic pulse for 1.3 Mllz and wire of 
radiWl 64 microns in log and linear space. 
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Figure 4.16. End and side views of the monostalic acou~lic pul~e fOI 1.1 Mllz alld wire of 
radius 64 miCJ"Orul. 
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Figure 4.17 3 n reprcsenlafion of the monoslallc acou.~lic rml~c for 5. 2 rvUl l and wire of 
radius 25 microns in log and linear space. 
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Figure 4.18 End and "ide view8 of the nlonoslalic acoustic pulse ror 5.2 MIl;!: and \Vile of 
radiU9 25 micron8. 
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Figure 4.1') 3 0 repr~entalion of the mono~latic acou~tic pul~e for 5.2 /1,1117. and wilc I), 
radius 40 micron.~ i:n log and linear space. 
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Figure 4.20 End and ~ide vic'M of the monoslatlc acolI~lic fllI'~e for S.2 r-.ffI 7. and wite of 
radius 40 microns. 
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radiull 50 microns in log and linear space. 
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Figure 4.22 End and side views of the monostatic acoustic pulse for 5.21\.11 11: and wire or 
radius 50 microns. 
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Figure 4.23 3D repr-caent."ltion of the monostalic acoustic puJ~e for 5.2: Mllz lind wire of 
radius 64 micrOl"l!l in log and linear space. 
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Figure 4.24 End and Bide views of the monOlJlatic acoUlllic pulse for 5.2 MHz and wire or 
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12 



TABLE 11 1\ HALF-POWER BAc...-DWIDTH 

I I\, I (degrees) 

Frequency Wire Rad.ius (microns) ~P .I) 
(MHz) 2 ' I 40 I '0 I 64 

1.323 1.2 I 1.2 I 1.2 I 1.2 1.2 

5.292 1.2 I 1.2 I 1.2 I 1.2 1.2 

Comparison of the calculated values of I'm ' and (\, indiutc the acoustic beam for both 

1.3 MHz and 5.2 MHz are slightly narrower than calculated by theory, but show a close: to 

ideal beam rc:IpOJIlIC . 

Ta ble 12 lists L, , the length of the monoltatic pulse length for both frequen::ies. Ibc 

theoretical value is 0.0168 meten. Again. there is good agreement between the calculated 

and measured values 8UB8cstirlg that the acoUlitic transmitter, transducer and receM::f system 

is performing as designed . 

TABLE 12 MONOSTATIC PULSE LENGTII 

( 1., ) (lO'~metcr) 

Frequency Wire Radius (microns) ~ (L~I) 
(MHz) 2' I 40 I '0 I 64 

1.323 L7 I 1.7 I 1.7 I 1.6 1.7 

5.292 1.9 I 1.7 I 1.9 I 1.9 1.9 
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V. CUNCLU~10NS ANDRECOMMENDA110NS 

As di&cllSliOd in Section IV A, the semitivity for each wire should be equal for each of the 

fi"equencZ:s being evaluated based on the dependence of the fonn factor on the frequency of 

the incident energy and the size: of the fixed wire. The sensitMties calculated for the 5.2 

MHz transducer, 3.30±O.70 " ICf COWlts, were consistent to within 21 %. The sensitivities 

calculated for the 1.3 MHz transducer were inconsistent with a mean value of9.28±S.28 " 

106 c01mts. This large variation is believed to be due to a strong angular dependence 

between the orientation of the fixed wire target and the 1.3 MHz transducer. While use of 

a fixed wire as a standard target avoids the z-axis dependence and the difficulty of locating 

targets of minute size in the ruurow acouatic beam, these advantages appear to be 

outweighed by critical angular positioning requirements. The sensitivities of the two 

frequencies are parameters required in the estimation of both the mean particle radiU8 and 

the I1UI8S concentration of the suspended sediment using the inven.ion method discussed in 

tm wtxk. The angular dependency between a fixed wire target and the 1.3 MHz transducer 

em be awidcd by the use of a single smaIl, spherical target such as a bead or BB, suspended 

in the acoustic beam. A1though there will be no angular dependence between the spherical 

target and the transducer due to the symmetry of the target, care must be taken to accurately 

locate the target in the center of the very narrow acoustic beam. 
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The vabx:s of the sensitivities obtained from Eq. (4.1) and the known suspended sediment 

pArametcn were highly consistent for the 1.3 MHz and the three 5.2 Wiz transducers 

indicating the equipment And procedure were highly reliable. 

The proportionality between the b&ekscancr lcvc\ll and the square rool of the mass 

concentration confirms the reliability of the experimenlal method for the collection of 

backacalter data from the: SWlpcnded sediment. The cause of the mngIc outlying point in the 

1.3 MHz dAta is unknown, but is believed to be a SY8tem malfunction and not indicative of 

Ihe technique or noise pcrfonnanC(;. 

1be foon of the curves for the theoretical ratio of F(X, o)/F (Xl' 0) ,Rhown in Figure 

2.6, sh0W3 a low KIlIitivity to the: choice of as' and sufficient slope: to allow a safillfactory 

estimAtion of the mean partick: radius of the lognonnaJ 8ediment population over • range 

from 20 to 100 rnicrorJJ ~ the two-frequency invention method described here. The slope 

of the: CUJ1lCll approache8 zero for radii greater than 100 microns (200 micron diamcrtcr), 

seriously reducing the ability of the J{Xl , 0, ) fF(X!, 0,) ratio to discriminate mean radius 

sizes outside this range. 

The reflective material of the test tank results in the COlllltructive reflection of. portion 

of the acoustic energy off the &:ides and bouom of lhe tank. This crcalc:8 rcglON of 

II1\biguouB baclucatter ampIitudc:8 which can be miBinterprcted A8 the bacbcattcr from a teat 

target or suspended sediment under invcatigation. Additional analysis of these "range" 

ambiguities is required to identifY their location to avoid positioning of test targets or the 

mixing vcuel near these positions. Thill becomes particularly critical for low concentratiON 

and other weak targets. 



Calibration runs using sediment samples with different lognonnal distribution parametmJ 

will add to the verification of the inversion method by use of the different 

/{X." 0, )IF(XI .0,) c~ dctemrined by the value of 0 •. Fwtherrnore, the attenuation 

ver.sU$ concentration characteristics for different sediment types will be applied in along

beam mass estima1e8 to cornpen&ate for along-beam anenuation in the backscatter levels, and 

could possibly provide additional discrimination of sediment types. 

The two minute duration of the suspended sediment runs was chosen to allow the 

collection of a suffu:ient arnolUlt of data to ensure the effect of statistical noise: was 

minimized. Fwther investigation of the temporal resolution of this inversion technique will 

reveal the minimum sampling time required to arrive at a satisfactory and consistent 

estimation of &ediment particle size distribution and mass concentration. 

This study represents the first stage of characterizing the bacbcatter amplitude 

performance of the CASP, and implements a technique to estimate mean particle size and 

sediment mass concentration. While the wire target backscatter sensitivity calibrations were 

not fully sUCGe8Sful, the sample volume characteristics were successfully compared with 

theoretical values. Baseline performance data have been measured for a typical sediment 

population ovct a wide range of concentrations, enabling the system sensitivities to be 

estimated. 
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APPENDIXB 

LlST OF ~'YMBOLS 

equivalent particle radius 

ag geometric mean radius 

110 tran8ducer radius 

80WId speed in fluid 

f.. bacbcattcr fonn factor 

k..o comprcuion wave number 

n( a) particle size spcclral density 

p. backscattcrcd prcasure amplitude 

p_ on axis prcuurc amplitude at reference distance 

perpendicular distance from Iransducer to detected vohlme 

reference distance 

D transducer directivity 

cylindricaJ Bessel function of order 1 

K.: digital counlll ot'back8catter amplitude 

M mass concenlration 
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Sw sensitivity calculated ftom wire targets 

V voltage output of receiver 

0:0 attenuation coefficient in water 

Its attenuation coefficient of 8caneren 

spreading angle of transducer 

Po half power angle ofthc: transducer 

Ncunwmfactor 

fl n phaac shift of nth wave 

acoustic wavelength 

P I density of acattem" 

0g variance ofJognorrnal distribution about geometric mean radius 

duration of transmined puhc 

combined attenuation by fluid and scattcrcr 
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